Wave-driven electron inward transport in a magnetic nozzle

Sci Rep. 2022 Dec 5;12(1):20137. doi: 10.1038/s41598-022-24202-9.

Abstract

Plasma flows in divergent magnetic fields resembling a magnetic nozzle can be found over wide scales ranging from astrophysical objects to terrestrial plasma devices. Plasma detachment from a magnetic nozzle is a frequent occurrence in natural plasmas, e.g., plasma ejection from the Sun and release from the Sun's magnetic field, forming the solar wind. Plasma detachment has also been a challenging problem relating to space propulsion devices utilizing a magnetic nozzle, especially the detachment of the magnetized electrons having a gyro-radius smaller than the system's scale is required to maintain zero net current exhausted from the system. Here we experimentally demonstrate that a cross-field transport of the electrons toward the main nozzle axis, which contributes to neutralizing the ions detached from the nozzle, is induced by the spontaneously excited magnetosonic wave having the frequency considerably higher than the ion cyclotron frequency and close to the lower hybrid frequency, driving an E × B drift that only effects the electrons. Wave-induced transport and loss have been one of many important issues in plasma physics over the past several decades. Conversely, the presently observed electron inward transport has a beneficial effect on the detachment by reducing the divergence of the expanding plasma beam; this finding will open a new perspective for the role of waves and instabilities in plasmas.