Impacts of climate variability and land use on the blue and green water resources in a subtropical basin of China

Sci Rep. 2022 Dec 5;12(1):20993. doi: 10.1038/s41598-022-21880-3.

Abstract

Water scarcity has become a global severe challenge over the past few decades. Quantifying the impact of climate variability and land use on water resource availability is crucial for integrated water resource management. Many studies have focused on blue water but ignored green water which is important in the terrestrial ecosystem, especially on different temporal scales. In this study, we selected the Shanmei Reservoir, the most import drinking water resource for a rapidly development city of Southeast China, as a case for analysis of these impacts for the entire basin. We adopted the Soil and Water Assessment Tool (SWAT) to investigate the spatial and temporal distributions of blue water (BW), green water flow (GWF) and green water storage (GWS) in the Shanmei Reservoir Basin (SRB). The results of the blue and green water components (BW and GW) revealed that SRB is dominated by BW, accounting for 52.6% of the total water resources, while GW accounted for 47.4%. There was an insignificant upward trend of BW and a significant upward trend of GWF, with a tendency rate of 1.125 mm a-1. Precipitation was the key factor affecting BW on annual and monthly scales. The GWF was more sensitive to temperature at both the annual and monthly scales. The GWS was significantly correlated with precipitation at the monthly scale, while insignificant correlation occurred at the annual scale. The spatial distribution of BW was largely dominated by precipitation, and land-use types led to the differentiation of GW. It indicates that the BW of paddy fields is greater than that of forests, while the GWS of forests is greater than that of orchards and rainfed croplands.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Climate Change
  • Ecosystem*
  • Rivers
  • Water
  • Water Resources*

Substances

  • Water