Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3

Tuberculosis (Edinb). 2023 Jan:138:102288. doi: 10.1016/j.tube.2022.102288. Epub 2022 Nov 29.

Abstract

The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 μg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.

Keywords: Antibacterial; Efficacy; MmpL3; NTM; Pharmacokinetics; Tuberculosis.

Publication types

  • Letter
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Cystic Fibrosis* / drug therapy
  • Cystic Fibrosis* / microbiology
  • Lung
  • Mice
  • Microbial Sensitivity Tests
  • Mycobacterium Infections, Nontuberculous* / drug therapy
  • Mycobacterium Infections, Nontuberculous* / microbiology
  • Mycobacterium tuberculosis*
  • Nontuberculous Mycobacteria

Substances

  • Anti-Bacterial Agents