Augmentation of 3β-hydroxysteroid-Δ24 Reductase (DHCR24) Expression Induced by Bovine Viral Diarrhea Virus Infection Facilitates Viral Replication via Promoting Cholesterol Synthesis

J Virol. 2022 Dec 21;96(24):e0149222. doi: 10.1128/jvi.01492-22. Epub 2022 Dec 5.

Abstract

Bovine viral diarrhea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases of cattle, leading to numerous losses to the cattle rearing industry worldwide. The pathogenicity of BVDV is extremely complex, and many underlying mechanisms involved in BVDV-host interactions are poorly understood, especially how BVDV utilizes host metabolism pathway for efficient viral replication and spread. In our previous study, using an integrative analysis of transcriptomics and proteomics, we found that DHCR24 (3β-hydroxysteroid-Δ24 reductase), a key enzyme in regulating cholesterol synthesis, was significantly upregulated at both gene and protein levels in the BVDV-infected bovine cells, indicating that cholesterol is important for BVDV replication. In the present study, the effects of DHCR24-mediated cholesterol synthesis on BVDV replication was explored. Our results showed that overexpression of the DHCR24 effectively promoted cholesterol synthesis, as well as BVDV replication, while acute cholesterol depletion in the bovine cells by treating cells with methyl-β-cyclodextrin (MβCD) obviously inhibited BVDV replication. In addition, knockdown of DHCR24 (gene silencing with siRNA targeting DHCR24, siDHCR24) or chemical inhibition (treating bovine cells with U18666A, an inhibitor of DHCR24 activity and cholesterol synthesis) significantly suppressed BVDV replication, whereas supplementation with exogenous cholesterol to the siDHCR24-transfected or U18666A-treated bovine cells remarkably restored viral replication. We further confirmed that BVDV nonstructural protein NS5A contributed to the augmentation of DHCR24 expression. Conclusively, augmentation of the DHCR24 induced by BVDV infection plays an important role in BVDV replication via promoting cholesterol production. IMPORTANCE Bovine viral diarrhea virus (BVDV), an important pathogen of cattle, is the causative agent of bovine viral diarrhea-mucosal disease, which causes extensive economic losses in both cow- and beef-rearing industry worldwide. The molecular interactions between BVDV and its host are extremely complex. In our previous study, we found that an essential host factor 3β-hydroxysteroid-δ24 reductase (DHCR24), a key enzyme involved in cholesterol synthesis, was significantly upregulated at both gene and protein levels in BVDV-infected bovine cells. Here, we experimentally explored the function of the DHCR24-mediated cholesterol synthesis in regulating BVDV replication. We elucidated that the augmentation of the DHCR24 induced by BVDV infection played a significant role in viral replication via promoting cholesterol synthesis. Our data provide evidence that BVDV utilizes a host metabolism pathway to facilitate its replication and spread.

Keywords: DHCR24; bovine viral diarrhea virus; cholesterol; viral replication.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bovine Virus Diarrhea-Mucosal Disease*
  • Cattle
  • Cells, Cultured
  • Cholesterol* / biosynthesis
  • Diarrhea Viruses, Bovine Viral* / genetics
  • Diarrhea Viruses, Bovine Viral* / physiology
  • Oxidoreductases Acting on CH-CH Group Donors* / genetics
  • Virus Replication*

Substances

  • Cholesterol
  • Oxidoreductases Acting on CH-CH Group Donors