Luminal H2 O2 promotes ER Ca2+ dysregulation and toxicity of palmitate in insulin-secreting INS-1E cells

FASEB J. 2023 Jan;37(1):e22685. doi: 10.1096/fj.202201237R.

Abstract

The endoplasmic reticulum (ER) lumen is not only the major site for the assembly and folding of newly synthesized proteins but also the main intracellular Ca2+ store. Ca2+ ions are involved in versatile biochemical processes, including posttranslational processing and folding of nascent proteins. Disruption of ER Ca2+ homeostasis is usually accompanied by an ER stress response that can ultimately lead to apoptosis if unresolved. Abnormal ER Ca2+ depletion has been linked to pancreatic β-cell dysfunction and death under lipotoxic conditions. However, the underlying mechanisms how the β-cell toxic saturated free fatty acid palmitate perturbs ER Ca2+ homeostasis and its interplay with other organelles are not fully understood. In the present study, we demonstrate that treatment of insulin-secreting INS-1E cells with palmitate diminished ER Ca2+ levels, elevated cytosolic/mitochondrial Ca2+ content, lowered the mitochondrial membrane potential, and ATP content. In addition, palmitate-pretreated β-cells contained significantly less luminal Ca2+ , revealed a severely impaired ER Ca2+ reuptake rate, and substantially lower insulin content. Importantly, detoxification of luminal H2 O2 by expression of the ER-resident glutathione peroxidase 8 (GPx8) abrogated the lipotoxic effects of palmitate. Moreover, GPx8 supported oxidative protein folding and preserved insulin content under lipotoxic conditions. A direct involvement of luminal H2 O2 in palmitate-mediated ER Ca2+ depletion could be corroborated by the ectopic expression of an ER-luminal active catalase. Our data point to the critical role of luminal H2 O2 in palmitate-mediated depletion of ER Ca2+ through redox-dependent impairment of Ca2+ ATPase pump activity upstream of mitochondrial dysfunction in insulin-secreting INS-1E cells.

Keywords: beta cell death; calcium homeostasis; glutathione peroxidase; lipotoxicity; mitochondrial dysfunction; type 2 diabetes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endoplasmic Reticulum / metabolism
  • Endoplasmic Reticulum Stress
  • Insulin / metabolism
  • Insulin-Secreting Cells* / metabolism
  • Palmitates* / metabolism

Substances

  • Palmitates
  • Insulin