Sponge-nested polymer monolith sorptive extraction

J Chromatogr A. 2023 Jan 4:1687:463668. doi: 10.1016/j.chroma.2022.463668. Epub 2022 Nov 23.

Abstract

Polymer monoliths are an alternative to traditional particle-packed supports used in solid-phase extraction because of their ease of preparation, high porosity, and pH stability. They often required the attachment of monoliths to a support, such as the internal walls of a column to enable their use for sample preparation. Applications of free-standing polymer monoliths are rarely found because of their limited mechanical stability. Herein, divinylbenzene monoliths were polymerised within a commercial melamine-formaldehyde sponge using different polymerisation times. The sponge-nested polymer monoliths are highly robust, and their size and shape can be easily adjusted for desired applications. The prepared sponge-nested polymer monoliths had surface areas in the range of 237 m2 g-1 to 369 m2 g-1. A melamine-formaldehyde sponge cut into 1 cm3 cubes were used to template the polymer monoliths. Miniaturized monoliths with a size of 0.125 cm3 were directly cut from the larger cubes without compromising the integrity of the porous monolith structure. The resulting nested monolith sorptive extraction (NMSE) supports were applied for the extraction of the endocrine disruptors bisphenol A, 4-tert-butylphenol, and 4-tert-octylphenol. The prepared sponge-nested monoliths are low-cost (40 monoliths/AU$). NMSE was carried out by the direct immersion of the monoliths in the aqueous standards/samples, requiring only an orbital shaker for the extraction procedure. Best performance was obtained for polymer monoliths polymerized for 6 h, enabling limits of detection of 5.6 to 6.5 µg L-1 for the selected analysis using HPLC-UV.

Keywords: Endocrine disrupting phenols; High-performance liquid chromatography; Melamine-formaldehyde sponge; Porous polymer monolith; Sorptive extraction.

MeSH terms

  • Chromatography, High Pressure Liquid / methods
  • Formaldehyde
  • Polymers* / chemistry
  • Water* / chemistry

Substances

  • Polymers
  • Water
  • Formaldehyde