Mitigation effect of cell exclusion on blood damage in spiral groove bearings

J Biomech. 2023 Jan:146:111394. doi: 10.1016/j.jbiomech.2022.111394. Epub 2022 Nov 26.

Abstract

Cell exclusion in spiral groove bearing (SGB) excludes red blood cells from high shear regions in the bearing gaps and potentially reduce haemolysis in rotary blood pumps. However, this mechanobiological phenomenon has been observed in ultra-low blood haematocrit only, whether it can mitigate blood damage in a clinically-relevant blood haematocrit remains unknown. This study examined whether cell exclusion in a SGB alters haemolysis and/or high-molecular-weight von Willebrand factor (HMW vWF) multimer degradation. Citrated human blood was adjusted to 35 % haematocrit and exposed to a SGB (n = 6) and grooveless disc (n = 3, as a non-cell exclusion control) incorporated into a custom-built Couette test rig operating at 2000RPM for an hour; shearing gaps were 20, 30, and 40 μm. Haemolysis was assessed via spectrophotometry and HMW vWF multimer degradation was detected with gel electrophoresis and immunoblotting. Haemolysis caused by the SGB at gaps of 20, 30 and 40 μm were 10.6 ± 3.3, 9.6 ± 2.7 and 10.5 ± 3.9 mg/dL.hr compared to 23.3 ± 2.6, 12.8 ± 3.2, 9.8 ± 1.8 mg/dL.hr by grooveless disc. At the same shearing gap of 20 µm, there was a significant reduced in haemolysis (P = 0.0001) and better preserved in HMW vWF multimers (p < 0.05) when compared SGB to grooveless disc. The reduction in blood damage in the SGB compared to grooveless disc is indicative of cell exclusion occurred at the gap of 20 µm. This is the first experimental study to demonstrate that cell exclusion in a SGB mitigates the shear-induced blood damage in a clinically-relevant blood haematocrit of 35 %, which can be potentially utilised in future blood pump design.

Keywords: Cell exclusion; HMW vWF multimer degradation; Haemolysis; Left ventricular assist device; Spiral groove bearing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Erythrocytes / metabolism
  • Heart-Assist Devices*
  • Hematocrit
  • Hemolysis
  • Humans
  • von Willebrand Factor* / analysis
  • von Willebrand Factor* / metabolism

Substances

  • von Willebrand Factor