Assessment of epicardial adipose tissue on virtual non-contrast images derived from photon-counting detector coronary CTA datasets

Eur Radiol. 2023 Apr;33(4):2450-2460. doi: 10.1007/s00330-022-09257-6. Epub 2022 Dec 3.

Abstract

Objectives: To assess epicardial adipose tissue (EAT) volume and attenuation of different virtual non-contrast (VNC) reconstructions derived from coronary CTA (CCTA) datasets of a photon-counting detector (PCD) CT-system to replace true non-contrast (TNC) series.

Methods: Consecutive patients (n = 42) with clinically indicated CCTA and coronary TNC were included. Two VNC series were reconstructed, using a conventional (VNCConv) and a novel calcium-preserving (VNCPC) algorithm. EAT was segmented on TNC, VNCConv, VNCPC, and CCTA (CTA-30) series using thresholds of -190 to -30 HU and an additional segmentation on the CCTA series with an upper threshold of 0 HU (CTA0). EAT volumes and their histograms were assessed for each series. Linear regression was used to correlate EAT volumes and the Euclidian distance for histograms. The paired t-test and the Wilcoxon signed-rank test were used to assess differences for parametric and non-parametric data.

Results: EAT volumes from VNC and CCTA series showed significant differences compared to TNC (all p < .05), but excellent correlation (all R2 > 0.9). Measurements on the novel VNCPC series showed the best correlation (R2 = 0.99) and only minor absolute differences compared to TNC values. Mean volume differences were -12%, -3%, -13%, and +10% for VNCConv, VNCPC, CTA-30, and CTA0 compared to TNC. Distribution of CT values on VNCPC showed less difference to TNC than on VNCConv (mean attenuation difference +7% vs. +2%; Euclidean distance of histograms 0.029 vs. 0.016).

Conclusions: VNCPC-reconstructions of PCD-CCTA datasets can be used to reliably assess EAT volume with a high accuracy and only minor differences in CT values compared to TNC. Substitution of TNC would significantly decrease patient's radiation dose.

Key points: • Measurement of epicardial adipose tissue (EAT) volume and attenuation are feasible on virtual non-contrast (VNC) series with excellent correlation to true non-contrast series (all R2>0.9). • Differences in VNC algorithms have a significant impact on EAT volume and CT attenuation values. • A novel VNC algorithm (VNCPC) enables reliable assessment of EAT volume and attenuation with superior accuracy compared to measurements on conventional VNC- and CCTA-series.

Keywords: Adipose tissue; Computed tomography angiography; Heart; Medical image processing; Radiation dosage.

MeSH terms

  • Adipose Tissue / diagnostic imaging
  • Angiography*
  • Humans
  • Photons
  • Reproducibility of Results
  • Retrospective Studies
  • Tomography, X-Ray Computed* / methods