Interlayer Modulation of Layered Transition Metal Compounds for Energy Storage

ACS Appl Mater Interfaces. 2022 Dec 14;14(49):54369-54388. doi: 10.1021/acsami.2c08690. Epub 2022 Dec 2.

Abstract

Layered transition metal compounds are one of the most important electrode materials for high-performance electrochemical energy storage devices, such as batteries and supercapacitors. Charge storage in these materials can be achieved via intercalation of ions into the interlayer channels between the layer slabs. With the development of lithium-beyond batteries, larger carrier ions require optimized interlayer space for the unrestricted diffusion in the two-dimensional channels and effectively shielded electrostatic interaction between the slabs and interlayer ions. Therefore, interlayer modulation has become an efficient and promising approach to overcome the problems of sluggish kinetics, structural distortion, irreversible phase transition, dissolution of some transition metal elements, and air instability faced by these materials and thus enhance the overall electrochemical performance. In this review, we focus on the interlayer modulation of layered transition metal compounds for various batteries and supercapacitors. Merits of interlayer modulation on the charge storage procedures of charge transfer, ion diffusion, and structural transformation are first discussed, with emphasis on the state-of-art strategies of intercalation and doping with foreign species. Following the obtained insights, applications of modified layered electrode materials in various batteries and supercapacitors are summarized, which may guide the future development of high-performance and low-cost electrode materials for energy storage.

Keywords: activation energy; diffusion barrier; doping; intercalation; interlayer spacing; layered transition metal compounds.

Publication types

  • Review