Robust Graph Regularized NMF with Dissimilarity and Similarity Constraints for ScRNA-seq Data Clustering

J Chem Inf Model. 2022 Dec 12;62(23):6271-6286. doi: 10.1021/acs.jcim.2c01305. Epub 2022 Dec 2.

Abstract

The notable progress in single-cell RNA sequencing (ScRNA-seq) technology is beneficial to accurately discover the heterogeneity and diversity of cells. Clustering is an extremely important step during the ScRNA-seq data analysis. However, it cannot achieve satisfactory performances by directly clustering ScRNA-seq data due to its high dimensionality and noise. To address these issues, we propose a novel ScRNA-seq data representation model, termed Robust Graph regularized Non-Negative Matrix Factorization with Dissimilarity and Similarity constraints (RGNMF-DS), for ScRNA-seq data clustering. To accurately characterize the structure information of the labeled samples and the unlabeled samples, respectively, the proposed RGNMF-DS model adopts a couple of complementary regularizers (i.e., similarity and dissimilar regularizers) to guide matrix decomposition. In addition, we construct a graph regularizer to discover the local geometric structure hidden in ScRNA-seq data. Moreover, we adopt the l2,1-norm to measure the reconstruction error and thereby effectively improve the robustness of the proposed RGNMF-DS model to the noises. Experimental results on several ScRNA-seq datasets have demonstrated that our proposed RGNMF-DS model outperforms other state-of-the-art competitors in clustering.

MeSH terms

  • Algorithms
  • Cluster Analysis
  • Gene Expression Profiling / methods
  • Single-Cell Analysis* / methods
  • Single-Cell Gene Expression Analysis*