Further Quantifying the Niche-Neutral Continuum of Human Digestive Tract Microbiomes with Near Neutral Model and Stochasticity Analysis

Evol Bioinform Online. 2022 Nov 23:18:11769343221128540. doi: 10.1177/11769343221128540. eCollection 2022.

Abstract

It is postulated that the human digestive tract (DT) from mouth to intestine is differentiated into diverse niches. For example, Segata et al. discovered that the microbiomes of diverse habitats along the DT could be distinguished as 4 types (niches) including (i) stool; (ii) sub-gingival plaques (SubP) and supra-gingival plaques (SupP); (iii) tongue dorsum (TD), throat (TH), palatine tonsils (PT), and saliva (Sal); and (iv) hard palate (HP) and buccal mucosa (BM), and keratinized gingiva (KG). These niches are different not only in composition, but also in metabolic potentials. In a previous study, we applied Harris et al's multi-site neutral and Tang and Zhou's niche-neutral hybrid models to characterize the DT niches discovered by Segata et al. Here, we complement the previous study by applying Sloan's near-neural model and Ning et al's stochasticity analysis framework to quantify the niche-neutral continuum of the DT microbiome distribution to shed light on the possible ecological/evolutionary mechanism that shapes the continuum. Overall but excluding the stool site, the proportion of neutral OTUs (46%) is slightly higher than that of the positive selection (38%), but significantly higher than negative selection (15%). The gut (stool) exhibited 3 to 12 times lower neutrality than other DT sites. The analysis also cross-verified our previous hypothesis that the KG (keratinized gingiva) is of distinct assembly dynamics in the DT microbiome, should be treated as a fifth niche. Our findings offer new insight on the long-standing debate concerning whether a minimum of 2-mm of KG width is necessary for marginal periodontal health.

Keywords: Unified neutral theory of biodiversity (UNTB); digestive-tract (DT) niche differentiation; keratinized gingiva (KG) niche; near-neutral model; negatively selected species; neutral species; normalized stochasticity ratio (NSR); positively selected species.