Spatiotemporal dynamics and functional characteristics of the composition of the main fungal taxa in the root microhabitat of Calanthe sieboldii (Orchidaceae)

BMC Plant Biol. 2022 Dec 2;22(1):556. doi: 10.1186/s12870-022-03940-y.

Abstract

Background: Endophytic fungi play a critical ecological role in the growth and development of orchids, but little is known about the spatial and temporal dynamics of fungal diversity or the ecological functions of fungi during orchid growth and reproduction. Calanthe sieboldii Decne. is listed in the Chinese National Key Protected Wild Plants as a class I protected wild plant. To understand the community characteristics of root and soil fungi of the orchid during its reproductive seasons, we investigated the community composition, spatial and temporal dynamics, and functional characteristics of the orchid microhabitat fungi by using diversity and ecological functional analyses.

Results: We discovered that there were three, seven, and four dominant fungal families in the orchid's roots, rhizoplane soil, and rhizosphere soil, respectively. Tulasnellaceae, Aspergillaceae, and Tricholomataceae were the dominant fungi in this endangered orchid's microhabitats. The closer the fungal community was to the orchid, the more stable and the less likely the community composition to change significantly over time. The fungal communities of this orchid's roots and rhizoplane soil varied seasonally, while those of the rhizosphere soil varied interannually. Saprophytic fungi were the most abundant in the orchid's fungal community, and the closer the distance to the orchid, the more symbiotic fungi were present.

Conclusions: The fungi in different parts of the root microhabitat of C. sieboldii showed different spatiotemporal dynamic patterns. The fungal community near the orchid roots was relatively stable and displayed seasonal variation, while the community further away from the roots showed greater variation. In addition, compared with the soil fungi, the dominant endophytic fungi were more stable, and these may be key fungi influencing orchid growth and development. Our study on the spatiotemporal dynamics and functions of fungi provides a basis for the comprehensive understanding and utilization of orchid endophytic fungi.

Keywords: Endophytic fungi; Fungal ecological functions; Orchidaceae; Soil Fungi; Spatiotemporal dynamics.

MeSH terms

  • Agaricales*
  • Climate
  • Orchidaceae*
  • Rhizosphere
  • Soil

Substances

  • Soil