Deep-tissue SWIR imaging using rationally designed small red-shifted near-infrared fluorescent protein

Nat Methods. 2023 Jan;20(1):70-74. doi: 10.1038/s41592-022-01683-0. Epub 2022 Dec 1.

Abstract

Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano. miRFP718nano efficiently binds endogenous biliverdin chromophore and brightly fluoresces in mammalian cells and tissues. miRFP718nano has maximal emission at 718 nm and an emission tail in the short-wave infrared (SWIR) region, allowing deep-penetrating off-peak fluorescence imaging in vivo. The miRFP718nano structure reveals the molecular basis of its red shift. We demonstrate superiority of miRFP718nano-enabled SWIR imaging over NIR-I imaging of microbes in the mouse digestive tract, mammalian cells injected into the mouse mammary gland and NF-kB activity in a mouse model of liver inflammation.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fluorescent Dyes* / chemistry
  • Mammals
  • Mice
  • Optical Imaging*

Substances

  • Fluorescent Dyes