6-Benzyladenine alleviates NaCl stress in watermelon (Citrullus lanatus) seedlings by improving photosynthesis and upregulating antioxidant defences

Funct Plant Biol. 2023 Mar;50(3):230-241. doi: 10.1071/FP22047.

Abstract

Soil salinity is a growing problem in agriculture, plant growth regulators (PGRs) can regulate plant response to stress. The objective of this study was to evaluate the effects of exogenous 6-benzyladenine (6-BA) on photosynthetic capacity and antioxidant defences in watermelon (Citrullus lanatus L.) seedlings under NaCl stress. Two watermelon genotypes were subjected to four different treatments: (1) normal water (control); (2) 20mgL-1 6-BA; (3) 120mmolL-1 NaCl; and (4) 120mmolL-1 NaCl+20mgL-1 6-BA. Our results showed that NaCl stress inhibited the growth of watermelon seedlings, decreased their photosynthetic capacity, promoted membrane lipid peroxidation, and lowered the activity of protective enzymes. Additionally the salt-tolerant Charleston Gray variety fared better than the salt-sensitive Zhengzi NO.017 variety under NaCl stress. Foliar spraying of 6-BA under NaCl stress significantly increased biomass accumulation, as well as photosynthetic pigment, soluble sugar, and protein content, while decreasing malondialdehyde levels, H2 O2 content, and electrolyte leakage. Moreover, 6-BA enhanced photosynthetic parameters, including net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate; activated antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase; and improved the efficiency of the ascorbate-glutathione cycle by stimulating glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, as well as ascorbic acid and glutathione content. Principal component analysis confirmed that 6-BA improved salt tolerance of the two watermelon varieties, particularly Zhengzi NO.017, albeit through two different regulatory mechanisms. In conclusion, 6-BA treatment could alleviate NaCl stress-induced damage and improve salt tolerance of watermelons by regulating photosynthesis and osmoregulation, activating the ascorbate-glutathione cycle, and promoting antioxidant defences.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antioxidants* / metabolism
  • Antioxidants* / pharmacology
  • Citrullus* / metabolism
  • Glutathione / metabolism
  • Glutathione / pharmacology
  • Photosynthesis
  • Seedlings
  • Sodium Chloride / metabolism
  • Sodium Chloride / pharmacology

Substances

  • Antioxidants
  • benzylaminopurine
  • Sodium Chloride
  • Glutathione