A Multifunction Freestanding Liquid-Solid Triboelectric Nanogenerator Based on Low-Frequency Mechanical Sloshing

ACS Appl Mater Interfaces. 2022 Dec 14;14(49):54716-54724. doi: 10.1021/acsami.2c16271. Epub 2022 Dec 1.

Abstract

A simple rectangular-structured freestanding liquid-solid triboelectric nanogenerator (LS-TENG) was fabricated, which used fluorinated ethylene propylene (FEP) films and deionized water (DI) as friction materials. The LS-TENG can effectively convert mechanical energy into electrical energy under the extremely low-frequency shaking of 2 Hz and shows greatly reliable stability. The influence of liquid volume and units on the output performance of the LS-TENG was studied, and the mechanism of the triboelectric electrification process of the LS-TENG was analyzed by COMSOL Multiphysics software. The results show that friction materials, liquid types, and number of units have a great effect on the output performance of the LS-TENG. Under the optimized conditions, the designed array LS-TENG shows high output performance with the open-circuit voltage, short-circuit current, and transferred charge of 120 V, 3.9 μA, and 133 nC, respectively. The LS-TENG can be applied in capacitive storage, AC power, signal acquisition, and self-powered sensor. The multifunctional LS-TENG provides a potentially practical route for harvesting low-frequency mechanical energy in natural environments and enabling multifunctional applications.

Keywords: freestanding liquid−solid triboelectric nanogenerator; low frequency energy harvesting; rectangular structure; self-powered; triboelectrification effect.