Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges

ACS Appl Mater Interfaces. 2022 Dec 14;14(49):55119-55129. doi: 10.1021/acsami.2c17879. Epub 2022 Nov 30.

Abstract

Flexible piezoresistive sensors are highly desirable for tactile sensing and wearable electronics. However, the reported flexible piezoresistive sensors have the inherent trade-off effect between high sensitivity and wide pressure ranges. Herein, we report a flexible piezoresistive sensor with a three-dimensional (3D) porous microstructured sensing layer composed of silver nanowires (AgNWs) and a poly(vinylidene fluoride) (PVDF) matrix, exhibiting high sensitivity and wide pressure ranges. Benefiting from the conductive networks of AgNWs and the 3D porous structure of PVDF, the porous AgNWs/PVDF composite (PAPC)-based flexible piezoresistive sensor exhibits high sensitivities of 0.014 and 0.009 kPa-1 in the wide pressure ranges of 0-30 and 30-100 kPa, respectively. In addition, the fabricated sensor also shows a fast response time of 64 ms, a low detection limit of 25 Pa, and long-term durability over 10,000 continuous cycles. The PAPC-based flexible piezoresistive sensor can accurately monitor various human physiological activities (ranging from subtle deformations to vigorous body movements) by quantitatively measuring the tactile sensation on human skin. This work indicates that the proposed sensor can be potentially applicable to mobile healthcare monitoring devices as well as next-generation wearable electronics.

Keywords: 3D porous structure; AgNWs; PVDF; flexible piezoresistive sensor; wearable electronics.