Triphenylbismuth dichloride inhibits human glyoxalase I and induces cytotoxicity in cultured cancer cell lines

J Toxicol Sci. 2022;47(12):539-546. doi: 10.2131/jts.47.539.

Abstract

Organobismuth compounds, i.e., organic-inorganic hybrid molecules composed of an organic structure and bismuth metal, have been reported to induce cytotoxicity in cancer cells; however, the target proteins associated with this cytotoxicity have not been elucidated. Herein, we investigated the inhibitory effect of five organobismuth compounds on human glyoxalase I (hGLO I), a promising target candidate for cancer therapy. Among these compounds, triphenylbismuth dichloride (Bi-05) exerted a strong inhibitory effect on hGLO I. Indeed, Bi-05 inhibited hGLO I in a dose-dependent manner with an IC50 value of 0.18 µM. Bi-05 also induced cytotoxicity in human leukemia HL-60 cells and human lung cancer NCI-H522 cells, both of which exhibit high expression levels of GLO I. However, the hGLO I-inhibiting and cytotoxic effects of Bi-05 disappeared when the bismuth atom was replaced with an antimony or phosphorus atom. Bismuth(III) nitrate had little inhibitory effect on hGLO I activity and only slightly reduced the viability of cancer cells. In the culture medium of Bi-05-treated HL-60 cells, the concentration of the GLO I substrate methylglyoxal was markedly elevated. In addition, Bi-05 treatment more strongly inhibited human lung cancer NCI-H522 cell (exhibiting high GLO I expression) proliferation than human lung cancer NCI-H460 cell (exhibiting low GLO I expression) proliferation. Furthermore, the cytotoxicity of Bi-05 was significantly decreased by pre- and co-treatment with the methylglyoxal scavengers N-acetyl-L-cysteine and aminoguanidine. Overall, these results suggest that Bi-05 treatment leads to the accumulation of methylglyoxal via GLO I inhibition, resulting in cytotoxic effects in cancer cells.

Keywords: Cancer cells; Cytotoxicity; Glyoxalase I; Organobismuth.

MeSH terms

  • Bismuth
  • HL-60 Cells
  • Humans
  • Lactoylglutathione Lyase*
  • Lung Neoplasms*
  • Pyruvaldehyde / toxicity

Substances

  • triphenyl bismuth
  • Lactoylglutathione Lyase
  • Pyruvaldehyde
  • Bismuth