Polymerizable Surfactant Ligand for Stabilization and Film Formation of CsPbBr3 Nanocrystals

Langmuir. 2022 Dec 13;38(49):15253-15262. doi: 10.1021/acs.langmuir.2c02349. Epub 2022 Nov 30.

Abstract

Surfactant ligands are important in the synthesis of inorganic perovskite nanocrystals (NCs), not only for stabilizing NCs but also for surface defect passivation. A new polymerizable surfactant ligand with a multidentate l-cysteine head, a long oleoyl tail, and a polymerizable styrenyl group (NOSVC) is designed for the post-synthesis treatment and stabilization of colloidal CsPbBr3 NCs in this work. 1H nuclear magnetic resonance and X-ray photoelectron spectroscopy analysis show that the l-cysteine head has strong interactions with the NCs. The absolute photoluminescence quantum yields of the colloidal NCs are increased from 45.1% of the pristine NCs stabilized with oleic acid/oleyl amine to 91.8% after NOSVC treatment. NOSVC-stabilized CsPbBr3 colloidal NCs show enhanced stabilities when exposed in polar solvents. The NOSVC-stabilized CsPbBr3 NCs in a solid film state allow for a photopolymerization to be carried out with the assistance of a photoinitiator. The polymerized films of NOSVC-treated NCs exhibit significantly enhanced stability against thermal radiation, ultraviolet irradiation, and humidity. We also fabricated self-healing polymer films incorporating NOSVC-treated CsPbBr3 NCs as a green filter for a white light-emitting diode device. The green light-emitting films are very stable in humid environments, revealing the great application potential of NOSVC-treated CsPbBr3 NCs in flexible display and lighting devices.