Probing Distinctive Redox Mechanism in Ni-Rich Cathode Via Real-Time Quick X-Ray Absorption Spectroscopy

Small Methods. 2023 Jan;7(1):e2201173. doi: 10.1002/smtd.202201173. Epub 2022 Nov 29.

Abstract

X-ray radiation damage on the measuring system has been a critical issue regularly for a long-time exposure to X-ray beam during the in operando characterizations, which is particularly severe when the applied X-ray energy is near the absorption edges (M, L, K, etc.) of the interest element. To minimize the negative effects raised by beam radiation, we employ quick X-ray absorption spectroscopy (QXAS) to study the electrochemical reaction mechanism of a Ni-rich layered structure cathode for lithium-ion batteries. With the advanced QXAS technique, the electronic structure and local coordination environment of the transition metals (TMs) are monitored in-operando with limited radiation damage. Compared to the conventional step-mode X-ray absorption spectroscopy, the QXAS can provide more reliable oxidation state change and more detailed local structure evolutions surrounding TMs (Ni and Co) in Ni-rich layered oxides. By leveraging these advantages of QXAS, we demonstrated that the Ni dominates the electrochemical process with the Co being almost electrochemically inactive. Reversible Ni ions movement between TMs sites and Li sites is also revealed by the time-resolved QXAS technique.

Keywords: Ni-rich cathodes; lithium-ion batteries; quick X-ray absorption spectroscopy; radiation damage.