Mechanical properties and acoustic emission analysis of desert sand concrete reinforced with steel fiber

Sci Rep. 2022 Nov 28;12(1):20488. doi: 10.1038/s41598-022-24198-2.

Abstract

In this study, to reduce the consumption of natural sand and improve the utilization rate of desert sand in western China, while preparing 14 groups of samples, desert sand is used to replace natural sand by the ratio of 20%, 40%, and 60%, and steel fiber is mixed with volume fraction 0.5%, 1.0%, 1.5%, and 2.0%. The mechanical properties of the specimens, including compressive strength, splitting tensile strength, and axial compressive strength were tested. Besides, the microstructures of the samples were analyzed by SEM, XRD, and acoustic emission detection technologies to identify the damage process. The results show that the desert sand can refine the microstructure and fill the pores, and it has good comprehensive properties at a 40% substitution rate. The compression properties of specimens are not apparently improved, but the tensile strength and deformation properties are significantly improved. The steel fiber with 1.5 vol% content behaves better, and the 28d compressive strength of the optimized group reaches 58.7 MPa. As a result, the polynomial fitting degree of total AE hits and stress level receives a more incredible goodness (R2) value than 0.96. The strength characteristics of steel fiber-desert sand concrete (SFDSC) can meet the demands of C40 concrete, and this research can provide a reference for engineers using desert sand in their designs.