The Effects of Rf4 and the Genetic Mechanism Behind Fertility Restoration of Wild Abortive Cytoplasmic Male Sterility (WA-CMS) in Japonica Rice (Oryza sativa ssp. Japonica)

Rice (N Y). 2022 Nov 28;15(1):59. doi: 10.1186/s12284-022-00605-0.

Abstract

Wild abortive-type cytoplasmic male sterility (WA-type CMS) has been exclusively used in hybrid seed production in indica rice cultivars, and fertility restoration in WA-type CMS is controlled by two major restorer genes, Rf3 and Rf4, through a sporophytic mechanism. However, the genetic mechanism underlying fertility restoration in WA-type CMS in japonica cultivars is poorly understood. In the present study, C418, a leading Chinsurah Boro II- (BT)-type japonica restorer line, showed partial restoration ability in WA-type japonica CMS lines. The 1:1 segregation ratio of partially fertile to sterile plants in a three-cross F1 population indicated that fertility restoration is controlled by one dominant gene. Gene mapping and sequencing results revealed that the target gene should be Rf4. The Rf4 gene restores fertility through a sporophytic mechanism, but the Rf4 pollen grains show a preferential fertilization in the testcross F1 plants. Furthermore, Rf4 was confirmed to have only a minor effect on fertility restoration in WA-type japonica CMS lines, and Rf gene dosage effects influenced the fertility restoration of WA-type CMS in japonica rice. The results of our study not only provide valuable insights into the complex genetic mechanisms underlying fertility restoration of WA-type CMS but will also facilitate the efficient utilization of WA-type CMS in japonica rice lines.

Keywords: Cytoplasmic male sterility; Fertility restoration; Japonica rice; Restorer-of-fertility gene (Rf); WA-type CMS.