Synthesis of 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione, a novel hydrogen sulfide-releasing phthalimide hybrid, and evaluation of its activity in models of inflammatory pain

Eur J Pharmacol. 2023 Jan 5:938:175409. doi: 10.1016/j.ejphar.2022.175409. Epub 2022 Nov 25.

Abstract

Hydrogen sulfide (H2S) is a gaseous mediator that modulates several physiological and pathological processes. Phthalimide analogues, substances that have the phthalimide ring in the structure, belong to the group of thalidomide analogues. Both H2S donors and phthalimide analogues exhibit activities in models of inflammation and pain. As molecular hybridization is an important strategy aiming to develop drugs with a better pharmacological profile, in the present study we synthesized a novel H2S-releasing phthalimide hybrid, 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione (PTD-H2S), and evaluated its activity in models of inflammatory pain in mice. Per os (p.o.) administration of PTD-H2S (125 or 250 mg/kg) reduced mechanical allodynia induced by carrageenan and lipopolysaccharide. Intraperitoneal (i.p.) administration of PTD-H2S (25 mg/kg), but not equimolar doses of its precursors 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (14.2 mg/kg) and 2-phthalimidethanol (12 mg/kg), reduced mechanical allodynia induced by lipopolysaccharide. The antiallodynic effect induced by PTD-H2S (25 mg/kg, i.p.) was more sustained than that induced by the H2S donor NaHS (8 mg/kg, i.p.). Previous administration of hydroxocobalamin (300 mg/kg, i.p.) or glibenclamide (40 mg/kg, p.o.) attenuated PTD-H2S antiallodynic activity. In conclusion, we synthesized a novel H2S-releasing phthalimide hybrid and demonstrated its activity in models of inflammatory pain. PTD-H2S activity may be due to H2S release and activation of ATP-sensitive potassium channels. The demonstration of PTD-H2S activity in models of pain stimulates further studies aiming to evaluate H2S-releasing phthalimide hybrids as candidates for analgesic drugs.

Keywords: H(2)S; Hydrogen sulfide; Inflammation; Pain; Phthalimide analogue.

MeSH terms

  • Animals
  • Hydrogen Sulfide*
  • Hyperalgesia*
  • Isoindoles
  • Lipopolysaccharides
  • Mice
  • Pain / drug therapy
  • Phthalimides / chemistry
  • Phthalimides / pharmacology
  • Phthalimides / therapeutic use
  • Thiones

Substances

  • Hydrogen Sulfide
  • Thiones
  • Isoindoles
  • Lipopolysaccharides
  • phthalimide
  • Phthalimides