Pyridine-linked covalent triazine frameworks with bidirectional electron donor-acceptor for efficient organic pollution removal

J Hazard Mater. 2023 Feb 15;444(Pt B):130428. doi: 10.1016/j.jhazmat.2022.130428. Epub 2022 Nov 17.

Abstract

Simultaneous regulation of adsorption and photocatalytic performance of covalent triazine frameworks (CTFs) to achieve efficient control of organic pollution in water is a promising strategy, but remains a formidable challenge. Herein, pyridine linkers were innovatively introduced into pristine CTF (p-CTF) and the bidirectional electron donor-acceptor (EDA) system of contaminant-to-pyridine and pyridine-to-triazine was constructed inside. Experimental results combined with theoretical calculations revealed that pyridine units with π-deficient properties performed as electron acceptors and electron donors in the adsorption and photocatalytic processes, respectively. This special structure provided a directional pathway for electron transfer, which endowed CTFs with excellent adsorption and photocatalytic properties. Compared to p-CTF, pyridine-linked CTF (M-CTF) showed a 16-fold increase in adsorption capacity for naphthalene (973.4 μmol·g-1). Benefiting from the optimized light absorption and electron transfer form (n → π*transition), M-CTF exhibited high regeneration efficiency after adsorption of both bisphenol A (94 % after 4 cycles) and naphthalene (95 % after 4 cycles). Besides, the removal performance of organic micropollutants from natural water showed a great advantage thanks to the bidirectional EDA system. Overall, the present study provides new insights into the optimization of electronic structures for carbon-based environmental functional materials applied to organic pollution control in water.

Keywords: Bidirectional electron donor-acceptor; Organic pollution; Photocatalysis; Pyridine-linked covalent triazine frameworks; adsorption.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrons*
  • Naphthalenes
  • Oxidants
  • Pyridines
  • Triazines*
  • Water

Substances

  • Triazines
  • Pyridines
  • Oxidants
  • naphthalene
  • Naphthalenes
  • Water