Interactive 3D Force/Torque Parameter Acquisition and Correlation Identification during Primary Trocar Insertion in Laparoscopic Abdominal Surgery: 5 Cases

Sensors (Basel). 2022 Nov 19;22(22):8970. doi: 10.3390/s22228970.

Abstract

Laparoscopic procedures have become indispensable in gastrointestinal surgery. As a minimally invasive process, it begins with primary trocar insertion. However, this step poses the threat of injuries to the gastrointestinal tract and blood vessels. As such, the comprehension of the insertion process is crucial to the development of robotic-assisted/automated surgeries. To sustain robotic development, this research aims to study the interactive force/torque (F/T) behavior between the trocar and the abdomen during the trocar insertion process. For force/torque (F/T) data acquisition, a trocar interfaced with a six-axis F/T sensor was used by surgeons for the insertion. The study was conducted during five abdominal hernia surgical cases in the Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University. The real-time F/T data were further processed and analyzed. The fluctuation in the force/torque (F/T) parameter was significant, with peak force ranging from 16.83 N to 61.86 N and peak torque ranging from 0.552 Nm to 1.76 Nm. The force parameter was observed to positively correlate with procedural time, while torque was found to be negatively correlated. Although during the process a surgeon applied force and torque in multiple axes, for a robotic system, the push and turn motion in a single axis was observed to be sufficient. For minimal tissue damage in less procedural time, a system with low push force and high torque was observed to be advantageous. These understandings will eventually benefit the development of computer-assisted or robotics technology to improve the outcome of the primary trocar insertion procedure.

Keywords: force/torque data acquisition; laparoscopic surgery; medical robotics; minimally invasive surgery; robotic surgery.

MeSH terms

  • Abdomen / surgery
  • Humans
  • Laparoscopy*
  • Robotics*
  • Surgical Instruments
  • Torque