The Dynamic Target Motion Perception Mechanism of Tactile-Assisted Vision in MR Environments

Sensors (Basel). 2022 Nov 18;22(22):8931. doi: 10.3390/s22228931.

Abstract

In the mixed reality (MR) environment, the task of target motion perception is usually undertaken by vision. This approach suffers from poor discrimination and high cognitive load when the tasks are complex. This cannot meet the needs of the air traffic control field for rapid capture and precise positioning of the dynamic targets in the air. Based on this problem, we conducted a multimodal optimization study on target motion perception judgment by controlling the hand tactile sensor to achieve the use of tactile sensation to assist vision in MR environment. This allows it to adapt to the requirements of future development-led interactive tasks under the mixed reality holographic aviation tower. Motion perception tasks are usually divided into urgency sensing for multiple targets and precise position tracking for single targets according to the number of targets and task division. Therefore, in this paper, we designed experiments to investigate the correlation between tactile intensity-velocity correspondence and target urgency, and the correlation between the PRS (position, rhythm, sequence) tactile indication scheme and position tracking. We also evaluated it through comprehensive experiment. We obtained the following conclusions: (1) high, higher, medium, lower, and low tactile intensities would bias human visual cognitive induction to fast, faster, medium, slower, and slow motion targets. Additionally, this correspondence can significantly improve the efficiency of the participants' judgment of target urgency; (2) under the PRS tactile indication scheme, position-based rhythm and sequence cues can improve the judgment effect of human tracking target dynamic position, and the effect of adding rhythm cues is better. However, when adding rhythm and sequence cues at the same time, it can cause clutter; (3) tactile assisted vision has a good improvement effect on the comprehensive perception of dynamic target movement. The above findings are useful for the study of target motion perception in MR environments and provide a theoretical basis for subsequent research on the cognitive mechanism and quantitative of tactile indication in MR environment.

Keywords: cognitive mechanisms; mixed reality; motion perception; tactile assistance; tactile sensor; velocity and position.

MeSH terms

  • Augmented Reality*
  • Humans
  • Motion Perception*
  • Touch
  • Touch Perception*
  • Vision, Ocular

Grants and funding

The research was supported by the National Natural Science Foundation of China (grant number 52,175,282).