Sound Classification and Processing of Urban Environments: A Systematic Literature Review

Sensors (Basel). 2022 Nov 8;22(22):8608. doi: 10.3390/s22228608.

Abstract

Audio recognition can be used in smart cities for security, surveillance, manufacturing, autonomous vehicles, and noise mitigation, just to name a few. However, urban sounds are everyday audio events that occur daily, presenting unstructured characteristics containing different genres of noise and sounds unrelated to the sound event under study, making it a challenging problem. Therefore, the main objective of this literature review is to summarize the most recent works on this subject to understand the current approaches and identify their limitations. Based on the reviewed articles, it can be realized that Deep Learning (DL) architectures, attention mechanisms, data augmentation techniques, and pretraining are the most crucial factors to consider while creating an efficient sound classification model. The best-found results were obtained by Mushtaq and Su, in 2020, using a DenseNet-161 with pretrained weights from ImageNet, and NA-1 and NA-2 as augmentation techniques, which were of 97.98%, 98.52%, and 99.22% for UrbanSound8K, ESC-50, and ESC-10 datasets, respectively. Nonetheless, the use of these models in real-world scenarios has not been properly addressed, so their effectiveness is still questionable in such situations.

Keywords: Convolutional Neural Networks; attention mechanisms; audio classification; audio processing; deep learning; transformers.

Publication types

  • Systematic Review

MeSH terms

  • Cities
  • Noise*
  • Publications
  • Sound*

Grants and funding

This article is a result of the project Safe Cities—“Inovação para Construir Cidades Seguras”, with reference POCI-01-0247-FEDER-041435, co-funded by the European Regional Development Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement.