A Study on Hot Stamping Formability of Continuous Glass Fiber Reinforced Thermoplastic Composites

Polymers (Basel). 2022 Nov 15;14(22):4935. doi: 10.3390/polym14224935.

Abstract

In this study, hot stamping tests on continuous glass fiber (GF)-reinforced thermoplastic (PP) composites were conducted under different process parameters using a self-designed hemispherical hot stamping die with a heating system. The effects of parameters such as preheating temperature, stamping depth, and stamping speed on the formability of the fabricated parts were analyzed using optical microscopy and scanning electron microscopy (SEM). The test results show that the suitable stamping depth should be less than 15 mm, the stamping speed should be less than 150 mm/min, and the preheating temperature should be about 200 °C. From the edge of the formed parts to their pole area, a thin-thick-thin characteristic in thickness was observed. Under the same preheating temperature, the influence of stamping depth on the thickness variation of the formed parts was more significant than the stamping speed. The primary defects of the formed parts were cracking, wrinkling, delamination, and fiber exposure. Resin poverty often occurred in the defect area of the formed parts and increased with stamping depth and stamping speed.

Keywords: hot stamping; part defect; resin flow; thermoplastic resin matrix composites; thickness distribution.