Effect of Ultraviolet-A Radiation on Alicyclic Epoxy Resin and Silicone Rubber Used for Insulators

Polymers (Basel). 2022 Nov 12;14(22):4889. doi: 10.3390/polym14224889.

Abstract

Compared with the high-temperature vulcanized silicone rubber (HTVSR) insulator, the alicyclic epoxy resin insulator has higher hardness and better bonding between the core and the sheath. This makes the latter very promising in the coastal area of Southern China. Outdoor insulators are often subjected to high intensity of ultraviolet (UV)-A radiation. The influence of UV-A radiation is significant for alicyclic epoxy resin insulators. To help address the concern, the surface of two kinds of samples, namely the alicyclic epoxy resin insulator and HTVSR insulator, with UV-A aging time was characterized by tests of scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The operation properties (mechanical properties, hydrophobicity) for outdoor insulators were also analyzed. It was found that the appearance color of the alicyclic epoxy resin has changed greatly, and there is a certain degree of fading. The mechanical properties of the alicyclic epoxy resin are maintained well and, the hydrophobicity decreases gradually. For silicone rubber, the appearance color change of silicone rubber is smaller, and the mechanical properties of silicone rubber decreased greatly. In addition, although the hydrophobicity of silicone rubber decreased gradually, it is still better than that of alicyclic epoxy resin. Both materials have broken chemical bonds, but the degree is relatively light, which meets the requirements of insulators for outdoor operation.

Keywords: alicyclic epoxy resin; hygrothermal environment; silicone rubber; ultraviolet-A radiation.