Preparation and Characterization of QPVA/PDDA Electrospun Nanofiber Anion Exchange Membranes for Alkaline Fuel Cells

Nanomaterials (Basel). 2022 Nov 10;12(22):3965. doi: 10.3390/nano12223965.

Abstract

In recent years, there has been considerable interest in anion exchange membrane fuel cells (AEMFCs) as part of fuel cell technology. Anion exchange membranes (AEMs) provide a significant contribution to the development of fuel cells, particularly in terms of performance and efficiency. Polymer composite membranes composed of quaternary ammonium poly(vinyl alcohol) (QPVA) as electrospun nanofiber mats and a combination of QPVA and poly(diallyldimethylammonium chloride) (PDDA) as interfiber voids matrix filler were prepared and characterized. The influence of various QPVA/PDDA mass ratios as matrix fillers on anion exchange membranes and alkaline fuel cells was evaluated. The structural, morphological, mechanical, and thermal properties of AEMs were characterized. To evaluate the AEMs' performances, several measurements comprise swelling properties, ion exchange capacity (IEC), hydroxide conductivity (σ), alkaline stability, and single-cell test in fuel cells. The eQP-PDD0.5 acquired the highest hydroxide conductivity of 43.67 ms cm-1 at 80 °C. The tensile strength of the membranes rose with the incorporation of the filler matrix, with TS ranging from 23.18 to 24.95 Mpa. The peak power density and current density of 24 mW cm-2 and 131 mA cm-2 were achieved with single cells comprising eQP-PDD0.5 membrane at 57 °C.

Keywords: AEMFCs; PDDA; anion exchange membrane; electrospinning; fuel cells; poly(vinyl alcohol).