Collective Effects in Ionic Liquid [emim][Tf2N] and Ionic Paramagnetic Nitrate Solutions without Long-Range Structuring

Molecules. 2022 Nov 13;27(22):7829. doi: 10.3390/molecules27227829.

Abstract

Mesoscopic shear elasticity has been revealed in ordinary liquids both experimentally by reinforcing the liquid/surface interfacial energy and theoretically by nonextensive models. The elastic effects are here examined in the frame of small molecules with strong electrostatic interactions such as room temperature ionic liquids [emim][Tf2N] and nitrate solutions exhibiting paramagnetic properties. We first show that these charged fluids also exhibit a nonzero low-frequency shear elasticity at the submillimeter scale, highlighting their resistance to shear stress. A neutron scattering study completes the dynamic mechanical analysis of the paramagnetic nitrate solution, evidencing that the magnetic properties do not induce the formation of a structure in the solution. We conclude that the elastic correlations contained in liquids usually considered as viscous away from any phase transition contribute in an effective way to collective effects under external stress whether mechanical or magnetic fields.

Keywords: ionic liquids; mechanical measurements; neutron scattering; shear elasticity.