Condensation of 4-Tert-butyl-2,6-dimethylbenzenesulfonamide with Glyoxal and Reaction Features: A New Process for Symmetric and Asymmetric Aromatic Sulfones

Molecules. 2022 Nov 12;27(22):7793. doi: 10.3390/molecules27227793.

Abstract

The synthesis of substituted aza- and oxaazaisowurtzitanes via direct condensation is challenging. The selection of starting ammonia derivatives is very limited. The important step in developing alternative synthetic routes to these compounds is a detailed study on their formation process. Here, we explored an acid-catalyzed condensation between 4-tert-butyl-2,6-dimethylbenzenesulfonamide and glyoxal in aqueous H2SO4, aqueous acetonitrile and acetone, and established some new processes hindering the condensation. In particular, an irreversible rearrangement of the condensation intermediate was found to proceed and be accompanied by the 1,2-hydride shift and by the formation of symmetric disulfanes and sulfanes. It has been shown for the first time that aldehydes may act as a reducing agent when disulfanes are generated from aromatic sulfonamides, as is experimentally proved. The condensation between 4-tert-butyl-2,6-dimethylbenzenesulfonamide and formaldehyde resulted in 1,3,5-tris((4-(tert-butyl)-2,6-dimethylphenyl)sulfonyl)-1,3,5-triazinane. It was examined if diimine could be synthesized from 4-tert-butyl-2,6-dimethylbenzenesulfonamide and glyoxal by the most common synthetic procedures for structurally similar imines. It has been discovered for the first time that the Friedel-Crafts reaction takes place between sulfonamide and the aromatic compound. A new synthetic strategy has been suggested herein that can reduce the stages in the synthesis of in-demand organic compounds of symmetric and asymmetric aromatic sulfones via the Brønsted acid-catalyzed Friedel-Crafts reaction, starting from aromatic sulfonamides and arenes activated towards an electrophilic attack.

Keywords: 1,2-hydride shift; 1,3,5-triazinane; 2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane; aromatic disulfanes; aromatic sulfanes; aromatic sulfonamides; aromatic sulfones; condensation; domino reactions.

MeSH terms

  • Glyoxal*
  • Imines
  • Sulfonamides
  • Sulfones*

Substances

  • Sulfones
  • Glyoxal
  • Sulfonamides
  • Imines