Integration of Two-Dimensional Liquid Chromatography-Mass Spectrometry and Molecular Docking to Characterize and Predict Polar Active Compounds in Curcuma kwangsiensis

Molecules. 2022 Nov 9;27(22):7715. doi: 10.3390/molecules27227715.

Abstract

Curcuma kwangsiensis, one species of Curcumae zedoaria Ros. c, is a commonly used traditional Chinese medicine (TCM) for treating cardiovascular disease, cancer, asthma and inflammation. Polar compounds are abundant in water decoction, which would be responsible for critical pharmacological effects. However, current research on polar compounds in Curcumae zedoaria Ros. c remains scarce. In this study, the polar fraction from Curcuma kwangsiensis was firstly profiled on G protein-coupled receptor 109A (GPR109A), β2-adrenergic receptor (β2-AR), neurotensin receptor (NTSR), muscarinic-3 acetylcholine receptor (M3) and G protein-coupled receptor 35 (GPR35), which were involved in its clinical indications and exhibited excellent β2-AR and GPR109A receptor activities. Then, an offline two-dimensional reversed-phase liquid chromatography (RPLC) coupled with the hydrophilic interaction chromatography (HILIC) method was developed to separate polar compounds. By the combination of a polar-copolymerized XAqua C18 column and an amide-bonded XAmide column, an orthogonality of 47.6% was achieved. As a result of coupling with the mass spectrometry (MS), a four-dimensional data plot was presented in which 373 mass peaks were detected and 22 polar compounds tentatively identified, including the GPR109A agonist niacin. Finally, molecular docking of these 22 identified compounds to β2-AR, M3, GPR35 and GPR109A receptors was performed to predict potential active ingredients, and compound 9 was predicted to have a similar interaction to the β2-AR partial agonist salmeterol. These results were supplementary to the material basis of Curcuma kwangsiensis and facilitated the bioactivity research of polar compounds. The integration of RPLC×HILIC-MS and molecular docking can be a powerful tool for characterizing and predicting polar active components in TCM.

Keywords: Curcuma kwangsiensis; molecular docking; polar compounds; quadrupole time-of-flight mass spectrometry; reversed-phase liquid chromatography × hydrophilic interaction chromatography.

MeSH terms

  • Chromatography, Liquid / methods
  • Curcuma*
  • Mass Spectrometry
  • Molecular Docking Simulation
  • Reactive Oxygen Species

Substances

  • Reactive Oxygen Species