Biodegradable Polymer Nanosheets Incorporated with Zn-Containing Nanoparticles for Biomedical Applications

Materials (Basel). 2022 Nov 16;15(22):8101. doi: 10.3390/ma15228101.

Abstract

So far, poly(L-lactic acid), PLLA nanosheets proved to be promising for wound healing. Such biodegradable materials are easy to prepare, bio-friendly, cost-effective, simple to apply and were shown to protect burn wounds and facilitate their healing. At the same time, certain metal ions are known to be essential for wound healing, which is why this study was motivated by the idea of incorporating PLLA nanosheets with Zn2+ ion containing nanoparticles. Upon being applied on wound, such polymer nanosheets should release Zn2+ ions, which is expected to improve wound healing. The work thus focused on preparing PLLA nanosheets embedded with several kinds of Zn-containing nanoparticles, their characterization and ion-release behavior. ZnCl2 and ZnO nanoparticles were chosen because of their different solubility in water, with the intention to see the dynamics of their Zn2+ ion release in liquid medium with pH around 7.4. Interestingly, the prepared PLLA nanosheets demonstrated quit similar ion release rates, reaching the maximum concentration after about 10 h. This finding implies that such polymer materials can be promising as they are expected to release ions within several hours after their application on skin.

Keywords: ZnCl2; ZnO; biodegradable polymer nanosheets; laser ablation in liquid; nanoparticles; wound healing.