Transcriptome Analysis of Goat Mammary Gland Tissue Reveals the Adaptive Strategies and Molecular Mechanisms of Lactation and Involution

Int J Mol Sci. 2022 Nov 20;23(22):14424. doi: 10.3390/ijms232214424.

Abstract

To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.

Keywords: RNA-seq; goat; involution; lactation; mammary cell remodeling; mammary gland.

MeSH terms

  • Animals
  • Female
  • Gene Expression Profiling
  • Goats* / genetics
  • Lactation / genetics
  • Phosphatidylinositol 3-Kinases
  • Pregnancy
  • Receptor, Platelet-Derived Growth Factor beta*

Substances

  • Receptor, Platelet-Derived Growth Factor beta
  • Phosphatidylinositol 3-Kinases