Potent Activation of Human but Not Mouse TRPA1 by JT010

Int J Mol Sci. 2022 Nov 18;23(22):14297. doi: 10.3390/ijms232214297.

Abstract

Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1), which is involved in inflammatory pain sensation, is activated by endogenous factors, such as intracellular Zn2+ and hydrogen peroxide, and by irritant chemical compounds. The synthetic compound JT010 potently and selectively activates human TRPA1 (hTRPA1) among the TRPs. Therefore, JT010 is a useful tool for analyzing TRPA1 functions in biological systems. Here, we show that JT010 is a potent activator of hTRPA1, but not mouse TRPA1 (mTRPA1) in human embryonic kidney (HEK) cells expressing hTRPA1 and mTRPA1. Application of 0.3-100 nM of JT010 to HEK cells with hTRPA1 induced large Ca2+ responses. However, in HEK cells with mTRPA1, the response was small. In contrast, both TRPA1s were effectively activated by allyl isothiocyanate (AITC) at 10-100 μM. Similar selective activation of hTRPA1 by JT010 was observed in electrophysiological experiments. Additionally, JT010 activated TRPA1 in human fibroblast-like synoviocytes with inflammation, but not TRPA1 in mouse dorsal root ganglion cells. As cysteine at 621 (C621) of hTRPA1, a critical cysteine for interaction with JT010, is conserved in mTRPA1, we applied JT010 to HEK cells with mutations in mTRPA1, where the different residue of mTRPA1 with tyrosine at 60 (Y60), with histidine at 1023 (H1023), and with asparagine at 1027 (N1027) were substituted with cysteine in hTRPA1. However, these mutants showed low sensitivity to JT010. In contrast, the mutation of hTRPA1 at position 669 from phenylalanine to methionine (F669M), comprising methionine at 670 in mTRPA1 (M670), significantly reduced the response to JT010. Moreover, the double mutant at S669 and M670 of mTRPA1 to S669E and M670F, respectively, induced slight but substantial sensitivity to 30 and 100 nM JT010. Taken together, our findings demonstrate that JT010 potently and selectively activates hTRPA1 but not mTRPA1.

Keywords: JT010; calcium channel; dorsal root ganglion; synoviocytes; transient receptor potential ankyrin repeat 1.

MeSH terms

  • Calcium / metabolism
  • Calcium Channels / genetics
  • Cysteine
  • Humans
  • Methionine
  • TRPA1 Cation Channel / genetics
  • Transient Receptor Potential Channels* / genetics

Substances

  • Transient Receptor Potential Channels
  • Calcium Channels
  • TRPA1 Cation Channel
  • JT010
  • Cysteine
  • Calcium
  • Methionine
  • TRPA1 protein, human