NB-LRR Lineage-Specific Equipment Is Sorted Out by Sequence Pattern Adaptation and Domain Segment Shuffling

Int J Mol Sci. 2022 Nov 17;23(22):14269. doi: 10.3390/ijms232214269.

Abstract

The nucleotide-binding and leucine-rich repeat (NB-LRR) genes, also known as resistance (R)-genes, play an important role in the activation of immune responses. In recent years, large-scale studies have been performed to highlight the diversification of plant NB-LRR repertories. It is well known that, to provide new functionalities, NB-LRR sequences are subject to duplication, domain fusions and acquisition and other kinds of mutations. Although some mechanisms that govern NB-LRR protein domain adaptations have been uncovered, to retrace the plant-lineage-specific evolution routes of R protein structure, a multi-genome comparative analysis was performed. This study allowed us to define groups of genes sharing homology relationships across different species. It is worth noting that the most populated groups contained well-characterized R proteins. The arsenal profile of such groups was investigated in five botanical families, including important crop species, to underline specific adaptation signatures. In addition, the dissection of 70 NB domains of well-characterized R-genes revealed the NB core motifs from which the three main R protein classes have been diversified. The structural remodeling of domain segments shaped the specific NB-LRR repertoires observed in each plant species. This analysis provided new evolutionary and functional insights on NB protein domain shuffling. Taken together, such findings improved our understanding of the molecular adaptive selection mechanisms occurring at plant R loci.

Keywords: R-gene; comparative analysis; immunity system; motif architecture; plant genome; protein domain.

MeSH terms

  • Acclimatization
  • Humans
  • Plant Proteins* / metabolism
  • Plants* / metabolism
  • Protein Domains

Substances

  • Plant Proteins

Grants and funding

This study was carried out within the Agritech National Research Center and received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)—MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4—D.D. 1032 17/06/2022, CN00000022). This manuscript reflects only the authors’ views and opinions; neither the European Union nor the European Commission can be considered responsible for them.