Exploring the Molecular Mechanism of Sepal Formation in the Decorative Flowers of Hydrangea macrophylla 'Endless Summer' Based on the ABCDE Model

Int J Mol Sci. 2022 Nov 15;23(22):14112. doi: 10.3390/ijms232214112.

Abstract

With its large inflorescences and colorful flowers, Hydrangea macrophylla has been one of the most popular ornamental plants in recent years. However, the formation mechanism of its major ornamental part, the decorative floret sepals, is still not clear. In this study, we compared the transcriptome data of H. macrophylla 'Endless Summer' from the nutritional stage (BS1) to the blooming stage (BS5) and annotated them into the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. The 347 identified differentially expressed genes (DEGs) associated with flower development were subjected to a trend analysis and a protein-protein interaction analysis. The combined analysis of the two yielded 60 DEGs, including four MADS-box transcription factors (HmSVP-1, HmSOC1, HmAP1-2, and HmAGL24-3) and genes with strong connectivity (HmLFY and HmUFO). In addition, 17 transcription factors related to the ABCDE model were screened, and key candidate genes related to the development of decorative floret sepals in H. macrophylla were identified by phylogenetic and expression pattern analysis, including HmAP1-1, HmAP1-2, HmAP1-3, HmAP2-3, HmAP2-4, and HmAP2-5. On this basis, a gene regulatory network model of decorative sepal development was also postulated. Our results provide a theoretical basis for the study of the formation mechanism of decorative floret sepals and suggest a new direction for the molecular breeding of H. macrophylla.

Keywords: Hydrangea macrophylla; floral organ development gene; flower development; molecular biology.

MeSH terms

  • Flowers / genetics
  • Hydrangea*
  • Phylogeny
  • Seasons
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Transcription Factors