Molecular Tuning of IR-786 for Improved Brown Adipose Tissue Imaging

Int J Mol Sci. 2022 Nov 9;23(22):13756. doi: 10.3390/ijms232213756.

Abstract

To overcome the limitations of brown adipose tissue (BAT) imaging with MRI and PET/CT, near-infrared (NIR) fluorescence imaging has been utilized in living animals because it is highly sensitive, noninvasive, nonradioactive, and cost-effective. To date, only a few NIR fluorescent dyes for detecting BAT have been reported based on the structure-inherent targeting strategy. Among them, IR-786, a commercial cyanine dye, was used firstly for quantitative NIR imaging of BAT perfusion in 2003. Owing to the high cytotoxicity, poor water solubility, and strong nonspecific background uptake of IR-786, the chemical structure of IR-786 should be redesigned to be more hydrophilic and less toxic so that it can show more BAT-specific accumulation. Here, we developed a BAT-specific NIR dye, BF800-AM, by incorporating the tyramine linker in the original structure of IR-786. After modifying the physicochemical properties of IR-786, in vivo results showed significant uptake of the newly designed BF800-AM in the BAT with improved signal-to-background ratio. Additional in vivo studies using mouse tumor models revealed that BF800-AM targeting to BAT is independent of tumor tissues, as distinct from IR-786 showing uptake in both tissues. Therefore, BF800-AM can be used for improved noninvasive visualization of BAT mass and activity in living animals.

Keywords: IR-786; brown adipose tissue; heptamethine cyanine dyes; near-infrared fluorescence imaging; targeted imaging.

MeSH terms

  • Adipose Tissue, Brown* / diagnostic imaging
  • Animals
  • Magnetic Resonance Imaging / methods
  • Mice
  • Neoplasms*
  • Positron Emission Tomography Computed Tomography

Substances

  • IR-786