Match Loads May Predict Neuromuscular Fatigue and Intermittent-Running Endurance Capacity Decrement after a Soccer Match

Int J Environ Res Public Health. 2022 Nov 21;19(22):15390. doi: 10.3390/ijerph192215390.

Abstract

How the match-derived load metrics relate to post-match fatigue in soccer is scarcely researched. Thus, the aim of this study was to determine the associations between soccer match-related internal and external loads, neuromuscular performance decrease and intermittent-running endurance capacity decrement immediately post-match. Vertical jump (countermovement jump), straight-line sprinting (10- and 20-m sprint), change of direction ability (T-test) and intermittent-running endurance capacity (YO-YO intermittent recovery level 2) were measured one day before and immediately after a friendly match in male soccer players. During the match, players' internal and external loads were also monitored, including heart rate-derived indices, total distance at various speed thresholds, average running velocity, maximal running velocity, number of sprints and number of accelerations and decelerations at various intensity thresholds. The results show that match-induced fatigue was reflected on neuromuscular performance and intermittent-running endurance capacity immediately post-match (p < 0.05). The quantification of percentage change of match external-load metrics, particularly accelerations and decelerations, provides a useful non-invasive predictor of subsequent neuromuscular fatigue status in soccer players immediately post-match (p < 0.05). However, only internal load metrics present a practical application for predicting intermittent-running endurance capacity impairment (p < 0.05). In summary, internal and external load metrics may allow for predicting the extent of acute fatigue, and variability between halves may represent a valuable alternative to facilitate the analysis of match-related fatigue both for research and applied purposes.

Keywords: fatigue; intermittent running; match loads; neuromuscular; soccer.

MeSH terms

  • Acceleration
  • Humans
  • Male
  • Muscle Fatigue
  • Nutritional Status
  • Running*
  • Soccer*

Grants and funding

This research received no external funding.