Preparation and Characterization of Phenolic Acid-Chitosan Derivatives as an Edible Coating for Enhanced Preservation of Saimaiti Apricots

Foods. 2022 Nov 8;11(22):3548. doi: 10.3390/foods11223548.

Abstract

In this study, caffeic acid (CA) and chlorogenic acid (CGA) were incorporated onto chitosan (CS) using free radical grafting initiated by a hydrogen peroxide/ascorbic acid (H2O2/Vc) redox system. The structural properties of the CA (CA-g-CS) and CGA (CGA-g-CS) derivatives were characterized by UV-Vis absorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermal stability analysis. Then, the antioxidant and antibacterial properties were evaluated, and the effect of CGA-g-CS on the postharvest quality of Saimaiti apricot was studied. It proved that phenolic acids were successfully grafted onto the CS. The grafting ratios of CA-g-CS and CGA-g-CS were 126.21 mg CAE/g and 148.94 mg CGAE/g. The antioxidation and antibacterial activities of CGA-g-CS were better than those of CA-g-CS. The MICs of CGA-g-CS against E. coli, S. aureus, and B. subtilis were 2, 1, and 2 mg/mL. The inhibitory zones of 20 mg/mL CGA-g-CS against the three bacteria were 19.16 ± 0.35, 16.33 ± 0.91, and 16.24 ± 0.05 mm. The inhibitory effects of 0.5% CGA-g-CS on the firmness, weight loss, SSC, TA, relative conductivity, and respiration rate of the apricot were superior. Our results suggest that CGA-g-CS can be potentially used as an edible coating material to preserve apricots.

Keywords: antimicrobial activity; antioxidant activity; apricot; chitosan; phenolic acids.

Grants and funding

This study was supported by the National Natural Science Foundation of China (No. 32060560).