The Impaired Neurodevelopment of Human Neural Rosettes in HSV-1-Infected Early Brain Organoids

Cells. 2022 Nov 9;11(22):3539. doi: 10.3390/cells11223539.

Abstract

Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells provide a critical platform for more mechanistic studies. We utilized a reductionist approach to model neurodevelopmental outcomes of HSV-1 infection of neural rosettes, which represent the in vitro equivalent of differentiating neural tubes. Specifically, we employed early-stage brain organoids (ES-organoids) composed of human induced pluripotent stem cells (hiPSCs)-derived neural rosettes to investigate aspects of the potential neuropathological effects induced by the HSV-1 infections on neurodevelopment. To allow for the long-term differentiation of ES-organoids, viral infections were performed in the presence of the antiviral drug acyclovir (ACV). Despite the antiviral treatment, HSV-1 infection caused organizational changes in neural rosettes, loss of structural integrity of infected ES-organoids, and neuronal alterations. The inability of ACV to prevent neurodegeneration was associated with the generation of ACV-resistant mutants during the interaction of HSV-1 with differentiating neural precursor cells (NPCs). This study models the effects of HSV-1 infection on the neuronal differentiation of NPCs and suggests that this environment may allow for accelerated development of ACV-resistance.

Keywords: acyclovir resistance; brain organoids; herpes simplex virus (HSV); human induced pluripotent stem cells (hiPSCs); neonatal herpes encephalitis; neural rosettes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyclovir / pharmacology
  • Acyclovir / therapeutic use
  • Animals
  • Antiviral Agents / pharmacology
  • Antiviral Agents / therapeutic use
  • Brain
  • Herpes Simplex*
  • Herpesvirus 1, Human*
  • Humans
  • Induced Pluripotent Stem Cells*
  • Infant, Newborn
  • Neural Stem Cells*
  • Organoids

Substances

  • Acyclovir
  • Antiviral Agents