Toll-interacting protein negatively regulated innate immune response via NF-κB signal pathway in blunt snout bream, Megalobrama amblycephala

Dev Comp Immunol. 2023 Mar:140:104595. doi: 10.1016/j.dci.2022.104595. Epub 2022 Nov 23.

Abstract

Toll-interacting protein (Tollip) is an important negative regulator of Toll-like receptor-mediated innate immunity by preventing excessive proinflammatory responses. The structure and function of Tollip have been well identified in mammals, but the piscine Tollip remains poorly understood. In the present study, a homologue of Tollip was identified and characterized from blunt snout bream (named MaTollip), which was composed of an 831 bp open reading frame encoding a protein of 276 amino acids. Phylogenetic analysis indicated that MaTollip is a novel member of Tollip family and possessed the highest similarity to that of grass carp (99.28%). Multiple alignment of amino acid sequence showed that MaTOLLIP shared a high degree of structural conservation, including a TBD domain, a C2 domain and a CUE domain, with its counterparts from other vertebrates. With regard to tissue-specific expression without immune challenge, MaTollip was constitutively expressed in a wide range of normal tissues, with the highest in the head-kidney and the lowest in the intestine. MaTollip expression in the head-kidney was strongly upregulated upon LPS stimulation and A. hydrophila infection. Fluorescence microscopic analysis revealed that the green fluorescent protein-TOLLIP was localized predominantly in the cytoplasm of EPC cells in a dot-like state. When MaTollip was overexpressed in HEK-293T and EPC cells, it could significantly inhibit the activity of nuclear factor-κB (NF-κB) promoter in a dose dependent manner. MaTollip overexpression in MAF cells lowered drastically the transcriptional expression level of lipopolysaccharide-induced proinflammatory cytokines (IL-1β, IL-6 and IL-8), whereas they were dramatically promoted by MaTollip knock down with siRNA. Taken together, this study demonstrated that MaTollip played a pivotal role in mediating host innate immune response to pathogen invasion, and unveiled the involvement of MaTollip in NF-κB-mediated transcription of inflammation genes, which paved the way for further studies of immune negative regulation mechanisms mediated by Tollip in fish.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Cyprinidae*
  • Cypriniformes* / genetics
  • Fish Proteins / metabolism
  • Immunity, Innate / genetics
  • Mammals / genetics
  • NF-kappa B / metabolism
  • Phylogeny
  • Signal Transduction

Substances

  • NF-kappa B
  • Fish Proteins