Bifacial all-perovskite tandem solar cells

Sci Adv. 2022 Nov 25;8(47):eadd0377. doi: 10.1126/sciadv.add0377. Epub 2022 Nov 25.

Abstract

The efficiency of all-perovskite tandem devices falls far below theoretical efficiency limits, mainly because a widening bandgap fails to increase open-circuit voltage. We report on a bifacial all-perovskite tandem structures with an equivalent efficiency of 29.3% under back-to-front irradiance ratio of 30. This increases energy yield and reduces the required bandgap of a wide-bandgap cell. Open-circuit voltage deficit is therefore minimized, although its performance under only front irradiance is not ideal. The bifacial device needs a sputtered rear transparent electrode, which could reduce photon path length and deteriorate stability of Pb-Sn perovskites. Embedding a light-scattering micrometer-sized particle layer into perovskite to trap light, effectively increases absorptance by 5 to 15% in the infrared region. Using a nonacidic hole transport layer markedly stabilizes the hole-extraction interface by avoiding proton-accelerated formation of iodine. These two strategies together increase efficiency of semitransparent Pb-Sn cells from 15.6 to 19.4%, enabling fabrication of efficient bifacial all-perovskite tandem devices.