Survival of compromised adult sensory neurons involves macrovesicular formation

Cell Death Discov. 2022 Nov 24;8(1):462. doi: 10.1038/s41420-022-01247-3.

Abstract

Adult neurons are recognized as post-mitotically arrested cells with limited regenerative potential. Given these restraints, it is perplexing how neurons sustain routine physiological and occasional reparative stress without compromising their density and integrity. We observed that specific insults or physiological alterations drive adult sensory neurons to attempt cell cycle entry. In this context, we demonstrate that at least a small population of sensory neurons modify their cytoskeleton as a survival mechanism in settings of growth arrest and associated stress. Most notably, among their apparent survival modifications is included a unique, and uncharacterized form of macrovesicle shedding and a subsequent neuron size adjustment. Using time-lapse imaging, we demonstrate macrovesicle shedding in some neurons subjected to growth restraint, but not associated with apoptosis. In axotomized neurons in vivo, cell cycle entry was rare to absent and macrovesicles were not observed, but we nonetheless identified changes in mRNA associated with autophagy. In vivo, neighbouring macrophages may have a role in modifying the neuron cytoskeleton after axotomy. Overall, the findings identify previously unrecognized structural adaptations in adult sensory neurons that may provide resilience to diverse insults.