Pheromone Activity after Stimulation with Ampicillin in a Plasmid-Free Enterococcus faecalis Strain

Microorganisms. 2022 Nov 19;10(11):2294. doi: 10.3390/microorganisms10112294.

Abstract

Enterococci exhibit clumping under the selective pressure of antibiotics. The aim of this study was to analyze the effect of supernatants from a plasmid-free clone (C29) of Enterococcus faecalis subjected to 0.25×, 0.5×, and 0.75× of the minimal inhibitory concentration (MIC) of ampicillin on the expression of an aggregation substance (AS) by a donor plasmid clone (1390R). A clumping assay was performed. The relative expression of prgB (gene that encodes AS) was determined and semiquantified in 1390R, and iad1 expression was determined and semiquantified in C29. AS expression was analyzed in the stimulated 1390R cells by confocal microscopy, flow cytometry, and ELISA. Adherence was also measured. Maximal clumping was observed with the pheromone medium 0.25×. Only the 1390R strain stimulated with the C29 supernatant without ampicillin and with 0.25× was able to express prgB. No expression of prgB was observed at 0.5× and 0.75×. The difference in relative expression (RE) of 1390R without ampicillin and with 0.25× was 0.5-fold. AS expression in 1390R showed the greatest increase upon stimulation with 0.25×. When 1390R was stimulated with 0.5× and 0.75×, AS expression was also observed but was significantly lower. Ampicillin stimulated C29 switch-off pheromone expression in recipient cells, which in turn switched off AS expression in donor cells. We observed that although prgB was switched off after 0.5× stimulation in C29, the supernatants induced expression in certain 1390R strains. In conclusion, ampicillin was able to modulate pheromone expression in free plasmid clones which, in turn, modulated AS expression in plasmid donor cells. The fact that PrgB gene expression was switched off after the ampicillin stimulus at 0.5× MIC, whereas AS proteins were present on the surface of the bacteria, suggested that a mechanism of rescue associated with mechanism pheromone sensing may be involved.

Keywords: aggregation substances; ampicillin; antimicrobial resistance; pheromones; plasmid.