Comparative Colorimetric Sensor Based on Bi-Phase γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO Nanoparticles for Lactate Detection

Biosensors (Basel). 2022 Nov 16;12(11):1025. doi: 10.3390/bios12111025.

Abstract

This work reports on Fe2O3 and ZnO materials for lactate quantification. In the synthesis, the bi-phase γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO nanoparticles (NPs) were obtained for their application in a lactate colorimetric sensor. The crystalline phases of the NPs were analyzed by XRD and XPS techniques. S/TEM images showed spheres with an 18 nm average and a needle length from 125 to 330 nm and 18 nm in diameter. The γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO were used to evaluate the catalytic activity of peroxidase with the substrate 3,3,5,5-tetramethylbenzidine (TMB), obtaining a linear range of 50 to 1000 μM for both NPs, and a 4.3 μM and 9.4 μM limit of detection (LOD), respectively. Moreover, γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO/lactate oxidase with TMB assays in the presence of lactate showed a linear range of 50 to 1000 µM, and both NPs proved to be highly selective in the presence of interferents. Finally, a sample of human serum was also tested, and the results were compared with a commercial lactometer. The use of ZnO with Fe2O3 achieved a greater response toward lactate oxidation reaction, and has implementation in a lactate colorimetric sensor using materials that are economically accessible and easy to synthesize.

Keywords: bi-phase γ-/α-Fe2O3; bi-phase γ-/α-Fe2O3/ZnO; lactate colorimetric sensor; lactate oxidation; peroxidase-like activity.

MeSH terms

  • Colorimetry / methods
  • Humans
  • Lactic Acid
  • Metal Nanoparticles* / chemistry
  • Zinc Oxide*

Substances

  • Lactic Acid
  • Zinc Oxide
  • 3,3',5,5'-tetramethylbenzidine