A Metal-Organic Frameworks Derived 1T-MoS2 with Expanded Layer Spacing for Enhanced Electrocatalytic Hydrogen Evolution

Small. 2023 Jan;19(4):e2205736. doi: 10.1002/smll.202205736. Epub 2022 Nov 24.

Abstract

Metal phase molybdenum disulfide (1T-MoS2 ) is considered a promising electrocatalyst for hydrogen evolution reaction (HER) due to its activated basal and superior electrical conductivity. Here, a one-step solvothermal route is developed to prepare 1T-MoS2 with expanded layer spacing through the derivatization of a Mo-based organic framework (Mo-MOFs). Benefiting from N,N-dimethylformamide oxide as external stress, the interplanar spacing of (002) of the MoS2 catalyst is extended to 10.87 Å, which represents the largest one for the 1T-MoS2 catalyst prepared by the bottom-up approach. Theoretical calculations reveal that the expanded crystal planes alter the electronic structure of 1T-MoS2 , lower the adsorption-desorption potentials of protons, and thus, trigger efficient catalytic activity for HER. The optimal 1T-MoS2 catalyst exhibits an overpotential of 98 mV at 10 mA cm-2 for HER, corresponding to a Tafel slope of 52 mV dec-1 . This Mo-MOFs-derived strategy provides a potential way to design high-performance catalysts by adjusting the layer spacing of 2D materials.

Keywords: 1T-MoS 2; electrocatalytic hydrolysis; expanded layer spacing; hydrogen evolution reactions; metal-organic framework-derived.