Efficient chemoenzymatic synthesis of α-aryl aldehydes as intermediates in C-C bond forming biocatalytic cascades

ACS Catal. 2022 Sep 2;12(17):10700-10710. doi: 10.1021/acscatal.2c02369. Epub 2022 Aug 17.

Abstract

Multi-enzyme biocatalytic cascades are emerging as practical routes for the synthesis of complex bioactive molecules. However, the relative sparsity of water-stable carbon electrophiles limits the synthetic complexity of molecules made from such cascades. Here, we develop a chemoenzymatic platform that leverages styrene oxide isomerase (SOI) to covert readily accessible aryl epoxides into α-aryl aldehydes through a Meinwald rearrangement. These unstable aldehyde intermediates are then intercepted with a C-C bond forming enzyme, ObiH, that catalyzes a transaldolase reaction with l-threonine to yield synthetically challenging β-hydroxy-α-amino acids. Co-expression of both enzymes in E. coli yields a whole cell biocatalyst capable of synthesizing a variety of stereopure non-standard amino acids (nsAA) and can be produced on gram-scale. We used isotopically labelled substrates to probe the mechanism of SOI, which we show catalyzes a concerted isomerization featuring a stereospecific 1,2-hydride shift. The viability of in situ generated α-aryl aldehydes was further established by intercepting them with a recently engineered decarboxylative aldolase to yield γ-hydroxy nsAAs. Together, these data establish a versatile method of producing α-aryl aldehydes in simple, whole cell conditions and show that these intermediates are useful synthons in C‒C bond forming cascades.

Keywords: Biocatalysis; Meinwald rearrangement; mechanism; multi-enzyme cascade; non-standard amino acid; pyridoxal phosphate.