Natural selection under conventional and organic cropping systems affect root architecture in spring barley

Sci Rep. 2022 Nov 22;12(1):20095. doi: 10.1038/s41598-022-23298-3.

Abstract

A beneficial root system is crucial for efficient nutrient uptake and stress tolerance. Therefore, evaluating the root system variation for breeding crop plants towards stress adaptation is critically important. Here, we phenotyped root architectural traits of naturally adapted populations from organic and conventional cropping systems under hydroponic and field trails. Long-term natural selection under these two cropping systems resulted in a microevolution of root morphological and anatomical traits. Barley lines developed under an organic system possessed longer roots with narrow root angle, larger surface area, increased root mass density, and a thinner root diameter with an increased number of metaxylem vessels. In contrast, lines adapted to the conventional system tend to have a shorter and wider root system with a larger root volume with a thicker diameter but fewer metaxylem vessels. Allometry analysis established a relationship between root traits and plant size among barley genotypes, which specifies that root angle could be a good candidate among studied root traits to determine root-borne shoot architecture. Further, multivariate analyses showed a strong tendency towards increased variability of the organically adapted population's root morphological and anatomical traits. The genotyping of ancestor populations validated the observations made in these experiments. Collectively, this results indicate significant differences in root phenotypes between conventional and organic populations, which could be useful in comparative genomics and breeding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hordeum* / genetics
  • Phenotype
  • Plant Breeding
  • Seasons
  • Selection, Genetic