Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance

J Am Chem Soc. 2022 Dec 7;144(48):22018-22025. doi: 10.1021/jacs.2c09147. Epub 2022 Nov 23.

Abstract

Platinum reaches considerable activity and stability as an electrocatalyst but is not always capable of maintaining such performance under CO poisoning, particularly in CO residual fuels for practical proton-exchange membrane fuel cells (PEMFCs). In this work, we report that surface anions including a series of nonmetal elements on Pt nanoparticles result in outstanding CO tolerance for electrocatalysts in fuel cells. In particular, phosphorus surface-anion-modified Pt (denoted as P-Pt) possesses more than 10-fold enhancement of CO tolerance (only 8.4% decay) than commercial Pt/C, which can serve as a robust electrocatalyst both in CO poisoning half cells and full cells. Moreover, the general mechanism and principle were proposed, stating that surface anions should be selected preferentially to offer electron feedback to downshift the d-band center for the Pt surface, successfully weakening CO adsorption and leading to high-tolerance capability. We anticipate that surface anions on a Pt surface can bring robust electrocatalysts for practical PEMFCs and offer novel insights for high-performance Pt-based electrocatalysts.